Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Phys Rev Lett ; 132(7): 075001, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38427892

RESUMO

Experimental results show that hosing of a long particle bunch in plasma can be induced by wakefields driven by a short, misaligned preceding bunch. Hosing develops in the plane of misalignment, self-modulation in the perpendicular plane, at frequencies close to the plasma electron frequency, and are reproducible. Development of hosing depends on misalignment direction, its growth on misalignment extent and on proton bunch charge. Results have the main characteristics of a theoretical model, are relevant to other plasma-based accelerators and represent the first characterization of hosing.

2.
Phys Rev Lett ; 131(14): 142501, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37862664

RESUMO

We present the measurement of the two-neutrino double-ß decay rate of ^{76}Ge performed with the GERDA Phase II experiment. With a subset of the entire GERDA exposure, 11.8 kg yr, the half-life of the process has been determined: T_{1/2}^{2ν}=(2.022±0.018_{stat}±0.038_{syst})×10^{21} yr. This is the most precise determination of the ^{76}Ge two-neutrino double-ß decay half-life and one of the most precise measurements of a double-ß decay process. The relevant nuclear matrix element can be extracted: M_{eff}^{2ν}=(0.101±0.001).

3.
Eur Phys J C Part Fields ; 83(9): 778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674593

RESUMO

We search for tri-nucleon decays of 76Ge in the dataset from the GERmanium Detector Array (GERDA) experiment. Decays that populate excited levels of the daughter nucleus above the threshold for particle emission lead to disintegration and are not considered. The ppp-, ppn-, and pnn-decays lead to 73Cu, 73Zn, and 73Ga nuclei, respectively. These nuclei are unstable and eventually proceed by the beta decay of 73Ga to 73Ge (stable). We search for the 73Ga decay exploiting the fact that it dominantly populates the 66.7 keV 73mGa state with half-life of 0.5 s. The nnn-decays of 76Ge that proceed via 73mGe are also included in our analysis. We find no signal candidate and place a limit on the sum of the decay widths of the inclusive tri-nucleon decays that corresponds to a lower lifetime limit of 1.2×1026 yr  (90% credible interval). This result improves previous limits for tri-nucleon decays by one to three orders of magnitude.

4.
Eur Phys J C Part Fields ; 83(4): 319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122826

RESUMO

The ability to detect liquid argon scintillation light from within a densely packed high-purity germanium detector array allowed the Gerda experiment to reach an exceptionally low background rate in the search for neutrinoless double beta decay of 76 Ge. Proper modeling of the light propagation throughout the experimental setup, from any origin in the liquid argon volume to its eventual detection by the novel light read-out system, provides insight into the rejection capability and is a necessary ingredient to obtain robust background predictions. In this paper, we present a model of the Gerda liquid argon veto, as obtained by Monte Carlo simulations and constrained by calibration data, and highlight its application for background decomposition.

6.
Phys Rev Lett ; 129(2): 024802, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35867433

RESUMO

A long, narrow, relativistic charged particle bunch propagating in plasma is subject to the self-modulation (SM) instability. We show that SM of a proton bunch can be seeded by the wakefields driven by a preceding electron bunch. SM timing reproducibility and control are at the level of a small fraction of the modulation period. With this seeding method, we independently control the amplitude of the seed wakefields with the charge of the electron bunch and the growth rate of SM with the charge of the proton bunch. Seeding leads to larger growth of the wakefields than in the instability case.

7.
Eur Phys J C Part Fields ; 82(4): 284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464994

RESUMO

The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double- ß decay in 76 Ge using isotopically enriched high purity germanium detectors at the Laboratori Nazionali del Gran Sasso of INFN. After Phase I (2011-2013), the experiment benefited from several upgrades, including an additional active veto based on LAr instrumentation and a significant increase of mass by point-contact germanium detectors that improved the half-life sensitivity of Phase II (2015-2019) by an order of magnitude. At the core of the background mitigation strategy, the analysis of the time profile of individual pulses provides a powerful topological discrimination of signal-like and background-like events. Data from regular 228 Th calibrations and physics data were both considered in the evaluation of the pulse shape discrimination performance. In this work, we describe the various methods applied to the data collected in Gerda Phase II corresponding to an exposure of 103.7 kg year. These methods suppress the background by a factor of about 5 in the region of interest around Q ß ß = 2039  keV, while preserving ( 81 ± 3 ) % of the signal. In addition, an exhaustive list of parameters is provided which were used in the final data analysis.

8.
Eur Phys J C Part Fields ; 81(6): 505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720720

RESUMO

Neutrinoless double- ß decay of 76 Ge is searched for with germanium detectors where source and detector of the decay are identical. For the success of future experiments it is important to increase the mass of the detectors. We report here on the characterization and testing of five prototype detectors manufactured in inverted coaxial (IC) geometry from material enriched to 88% in 76 Ge. IC detectors combine the large mass of the traditional semi-coaxial Ge detectors with the superior resolution and pulse shape discrimination power of point contact detectors which exhibited so far much lower mass. Their performance has been found to be satisfactory both when operated in vacuum cryostat and bare in liquid argon within the Gerda setup. The measured resolutions at the Q-value for double- ß decay of 76 Ge ( Q ß ß  = 2039 keV) are about 2.1 keV full width at half maximum in vacuum cryostat. After 18 months of operation within the ultra-low background environment of the GERmanium Detector Array (Gerda) experiment and an accumulated exposure of 8.5 kg · year, the background index after analysis cuts is measured to be 4 . 9 - 3.4 + 7.3 × 10 - 4 counts / ( keV · kg · year ) around Q ß ß . This work confirms the feasibility of IC detectors for the next-generation experiment Legend.

9.
Eur Phys J C Part Fields ; 81(8): 682, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776783

RESUMO

The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double- ß decay in 76 Ge with an array of about 40 high-purity isotopically-enriched germanium detectors. The experimental signature of the decay is a monoenergetic signal at Q ß ß = 2039.061 ( 7 )  keV in the measured summed energy spectrum of the two emitted electrons. Both the energy reconstruction and resolution of the germanium detectors are crucial to separate a potential signal from various backgrounds, such as neutrino-accompanied double- ß decays allowed by the Standard Model. The energy resolution and stability were determined and monitored as a function of time using data from regular 228 Th calibrations. In this work, we describe the calibration process and associated data analysis of the full Gerda dataset, tailored to preserve the excellent resolution of the individual germanium detectors when combining data over several years.

10.
Phys Rev Lett ; 126(16): 164802, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33961468

RESUMO

We use a relativistic ionization front to provide various initial transverse wakefield amplitudes for the self-modulation of a long proton bunch in plasma. We show experimentally that, with sufficient initial amplitude [≥(4.1±0.4) MV/m], the phase of the modulation along the bunch is reproducible from event to event, with 3%-7% (of 2π) rms variations all along the bunch. The phase is not reproducible for lower initial amplitudes. We observe the transition between these two regimes. Phase reproducibility is essential for deterministic external injection of particles to be accelerated.

11.
Phys Rev Lett ; 125(1): 011801, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678643

RESUMO

We present the first search for bosonic superweakly interacting massive particles (super-WIMPs) as keV-scale dark matter candidates performed with the GERDA experiment. GERDA is a neutrinoless double-ß decay experiment which operates high-purity germanium detectors enriched in ^{76}Ge in an ultralow background environment at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy. Searches were performed for pseudoscalar and vector particles in the mass region from 60 keV/c^{2} to 1 MeV/c^{2}. No evidence for a dark matter signal was observed, and the most stringent constraints on the couplings of super-WIMPs with masses above 120 keV/c^{2} have been set. As an example, at a mass of 150 keV/c^{2} the most stringent direct limits on the dimensionless couplings of axionlike particles and dark photons to electrons of g_{ae}<3×10^{-12} and α^{'}/α<6.5×10^{-24} at 90% credible interval, respectively, were obtained.

12.
Psychol Med ; 50(11): 1862-1871, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31422779

RESUMO

BACKGROUND: Evidence has been accumulating regarding alterations in components of the endocannabinoid system in patients with psychosis. Of all the putative risk factors associated with psychosis, being at clinical high-risk for psychosis (CHR) has the strongest association with the onset of psychosis, and exposure to childhood trauma has been linked to an increased risk of development of psychotic disorder. We aimed to investigate whether being at-risk for psychosis and exposure to childhood trauma were associated with altered endocannabinoid levels. METHOD: We compared 33 CHR participants with 58 healthy controls (HC) and collected information about previous exposure to childhood trauma as well as plasma samples to analyse endocannabinoid levels. RESULTS: Individuals with both CHR and experience of childhood trauma had higher N-palmitoylethanolamine (p < 0.001) and anandamide (p < 0.001) levels in peripheral blood compared to HC and those with no childhood trauma. There was also a significant correlation between N-palmitoylethanolamine levels and symptoms as well as childhood trauma. CONCLUSIONS: Our results suggest an association between CHR and/or childhood maltreatment and elevated endocannabinoid levels in peripheral blood, with a greater alteration in those with both CHR status and history of childhood maltreatment compared to those with either of those risks alone. Furthermore, endocannabinoid levels increased linearly with the number of risk factors and elevated endocannabinoid levels correlated with the severity of CHR symptoms and extent of childhood maltreatment. Further studies in larger cohorts, employing longitudinal designs are needed to confirm these findings and delineate the precise role of endocannabinoid alterations in the pathophysiology of psychosis.


Assuntos
Experiências Adversas da Infância/psicologia , Amidas/sangue , Ácidos Araquidônicos/sangue , Endocanabinoides/sangue , Etanolaminas/sangue , Ácidos Palmíticos/sangue , Alcamidas Poli-Insaturadas/sangue , Transtornos Psicóticos/sangue , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Sintomas Prodrômicos , Escalas de Graduação Psiquiátrica , Transtornos Psicóticos/etiologia , Fatores de Risco , Adulto Jovem
13.
Phys Rev Lett ; 125(26): 264801, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449727

RESUMO

We study experimentally the effect of linear plasma density gradients on the self-modulation of a 400 GeV proton bunch. Results show that a positive or negative gradient increases or decreases the number of microbunches and the relative charge per microbunch observed after 10 m of plasma. The measured modulation frequency also increases or decreases. With the largest positive gradient we observe two frequencies in the modulation power spectrum. Results are consistent with changes in wakefields' phase velocity due to plasma density gradients adding to the slow wakefields' phase velocity during self-modulation growth predicted by linear theory.

14.
Phys Rev Lett ; 125(25): 252502, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416389

RESUMO

The GERmanium Detector Array (GERDA) experiment searched for the lepton-number-violating neutrinoless double-ß (0νßß) decay of ^{76}Ge, whose discovery would have far-reaching implications in cosmology and particle physics. By operating bare germanium diodes, enriched in ^{76}Ge, in an active liquid argon shield, GERDA achieved an unprecedently low background index of 5.2×10^{-4} counts/(keV kg yr) in the signal region and met the design goal to collect an exposure of 100 kg yr in a background-free regime. When combined with the result of Phase I, no signal is observed after 127.2 kg yr of total exposure. A limit on the half-life of 0νßß decay in ^{76}Ge is set at T_{1/2}>1.8×10^{26} yr at 90% C.L., which coincides with the sensitivity assuming no signal.

16.
Eur Phys J C Part Fields ; 79(11): 978, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885491

RESUMO

The GERmanium Detector Array (Gerda) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double-beta decay of 76 Ge into 76 Se+2e - . Gerda has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new 76Ge enriched detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the Hades underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for Gerda Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the accuracy of pulse shape simulation codes.

17.
Science ; 365(6460): 1445-1448, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31488705

RESUMO

A discovery that neutrinos are Majorana fermions would have profound implications for particle physics and cosmology. The Majorana character of neutrinos would make possible the neutrinoless double-ß (0νßß) decay, a matter-creating process without the balancing emission of antimatter. The GERDA Collaboration searches for the 0νßß decay of 76Ge by operating bare germanium detectors in an active liquid argon shield. With a total exposure of 82.4 kg⋅year, we observe no signal and derive a lower half-life limit of T 1/2 > 0.9 × 1026 years (90% C.L.). Our T 1/2 sensitivity, assuming no signal, is 1.1 × 1026 years. Combining the latter with those from other 0νßß decay searches yields a sensitivity to the effective Majorana neutrino mass of 0.07 to 0.16 electron volts.

18.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180418, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31230571

RESUMO

In this article, we briefly summarize the experiments performed during the first run of the Advanced Wakefield Experiment, AWAKE, at CERN (European Organization for Nuclear Research). The final goal of AWAKE Run 1 (2013-2018) was to demonstrate that 10-20 MeV electrons can be accelerated to GeV energies in a plasma wakefield driven by a highly relativistic self-modulated proton bunch. We describe the experiment, outline the measurement concept and present first results. Last, we outline our plans for the future. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

19.
Phys Rev Lett ; 122(5): 054802, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30822008

RESUMO

We give direct experimental evidence for the observation of the full transverse self-modulation of a long, relativistic proton bunch propagating through a dense plasma. The bunch exits the plasma with a periodic density modulation resulting from radial wakefield effects. We show that the modulation is seeded by a relativistic ionization front created using an intense laser pulse copropagating with the proton bunch. The modulation extends over the length of the proton bunch following the seed point. By varying the plasma density over one order of magnitude, we show that the modulation frequency scales with the expected dependence on the plasma density, i.e., it is equal to the plasma frequency, as expected from theory.

20.
Phys Rev Lett ; 122(5): 054801, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30822039

RESUMO

We measure the effects of transverse wakefields driven by a relativistic proton bunch in plasma with densities of 2.1×10^{14} and 7.7×10^{14} electrons/cm^{3}. We show that these wakefields periodically defocus the proton bunch itself, consistently with the development of the seeded self-modulation process. We show that the defocusing increases both along the bunch and along the plasma by using time resolved and time-integrated measurements of the proton bunch transverse distribution. We evaluate the transverse wakefield amplitudes and show that they exceed their seed value (<15 MV/m) and reach over 300 MV/m. All these results confirm the development of the seeded self-modulation process, a necessary condition for external injection of low energy and acceleration of electrons to multi-GeV energy levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...